Spectral calibration of hyperspectral imagery using atmospheric absorption features.
نویسندگان
چکیده
One of the initial steps in the preprocessing of remote sensing data is the atmospheric correction of the at-sensor radiance images, i.e., radiances recorded at the sensor aperture. Apart from the accuracy in the estimation of the concentrations of the main atmospheric species, the retrieved surface reflectance is also influenced by the spectral calibration of the sensor, especially in those wavelengths mostly affected by gaseous absorptions. In particular, errors in the surface reflectance appear when a systematic shift in the nominal channel positions occurs. A method to assess the spectral calibration of hyperspectral imaging spectrometers from the acquired imagery is presented in this paper. The fundamental basis of the method is the calculation of the value of the spectral shift that minimizes the error in the estimates of surface reflectance. This is performed by an optimization procedure that minimizes the deviation between a surface reflectance spectrum and a smoothed one resulting from the application of a low-pass filter. A sensitivity analysis was performed using synthetic data generated with the MODTRAN4 radiative transfer code for several values of the spectral shift and the water vapor column content. The error detected in the retrieval is less than +/- 0.2 nm for spectral shifts smaller than 2 nm, and less than +/- 1.0 nm for extreme spectral shifts of 5 nm. A low sensitivity to uncertainties in the estimation of water vapor content was found, which reinforces the robustness of the algorithm. The method was successfully applied to data acquired by different hyperspectral sensors.
منابع مشابه
Analysis of Hyperspectral Imagery for Oil Spill Detection Using SAM Unmixing Algorithm Techniques
Oil spill is one of major marine environmental challenges. The main impacts of this phenomenon are preventing light transmission into the deep water and oxygen absorption, which can disturb the photosynthesis process of water plants. In this research, we utilize SpecTIR airborne sensor data to extract and classify oils spill for the Gulf of Mexico Deepwater Horizon (DWH) happened in 2010. For t...
متن کاملAtmospheric correction algorithm for hyperspectral imagery
In December 1997, the U.S. Department of Energy (DOE) established a Center of Excellence (Hyperspectral-Multispectral Algorithm Research Center, HyMARC) for promoting the research and development of algorithms to exploit spectral imagery. This center is located at the DOE Remote Sensing Laboratory in Las Vegas, Nevada, and is operated for the DOE by Bechtel Nevada. This paper presents the resul...
متن کاملA New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery
Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...
متن کاملRadiometric Performance Requirements for Optimal Atmospheric Processing of Hyperspectral Imagery
The radiometric performance of an hyperspectral sensor is limited due to physical constraints such as quantization, noise levels, spectral resolutions, and calibration accuracy. During the definition phase of a hyperspectral instrument, these numbers have to be defined based on scientific requirements for atmospheric correction methods to be applied and with respect to a variety of hyperspectra...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied optics
دوره 45 10 شماره
صفحات -
تاریخ انتشار 2006